详情页标题前

请问一下Flink怎么给join设置parallelism?-云小二-阿里云

详情页1

请问一下Flink怎么给join设置parallelism?

以下为热心网友提供的参考意见

在Flink中,可以通过设置ExecutionConfigparallelism属性来控制Join操作的并行度。具体步骤如下:

  1. 创建StreamExecutionEnvironment对象。
  2. 获取StreamExecutionEnvironment对象的getConfig()方法返回的ExecutionConfig对象。
  3. 调用ExecutionConfig对象的setParallelism()方法来设置Join操作的并行度。
  4. 将配置好的ExecutionConfig对象应用到Join操作上。

示例代码如下:

// 创建StreamExecutionEnvironment对象
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// 获取ExecutionConfig对象
ExecutionConfig executionConfig = env.getConfig();

// 设置Join操作的并行度为10
executionConfig.setParallelism(10);

// 将配置好的ExecutionConfig对象应用到Join操作上
DataStream<Tuple2<String, Integer>> stream1 = ...; // 第一个数据流
DataStream<Tuple2<String, Integer>> stream2 = ...; // 第二个数据流
DataStream<Tuple2<String, Integer>> joinedStream = stream1.join(stream2)...; // Join操作

以下为热心网友提供的参考意见

一:如果想通过DataStream对象,需要在提交job时通过StreamExecutionEnvironment#setParallelism(int parallelism)来设置整个job的并行度。
二:如果想针对一个join操作设置并行度,可以在join操作之前和之后分别设置,但是这种有可能失效,需要实时的观察一下。

以下为热心网友提供的参考意见

可以通过设置 DataStream 的 parallelism 来为 join 操作设置并行度。并行度决定了 Flink 如何分配任务以及使用多少资源来执行这些任务。

以下为热心网友提供的参考意见

在 Apache Flink 中,你可以通过以下步骤给 join 操作设置 parallelism:

  1. 获取 StreamExecutionEnvironment
    首先,你需要获取 StreamExecutionEnvironment,这是 Flink 作业的执行环境。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
  1. 设置整体并行度
    如果你想为整个作业设置默认的并行度,可以使用 setParallelism 方法:
env.setParallelism(parallelism);

其中 parallelism 是你想要设置的并行度值。

  1. 直接设置 join 算子的并行度
    对于特定的 join 算子,你可以在定义算子之后直接调用其 setParallelism 方法来设置并行度:
DataStream<T> joinedStream = stream1.join(stream2)
    .where(new KeySelector<T, K> {...})
    .equalTo(new KeySelector<T, K> {...})
    .window(...)
    .apply(new JoinFunction<T, T, R> {...})
    .setParallelism(joinParallelism);

在这个例子中,joinParallelism 是你为 join 算子设置的并行度。

  1. 使用 ExecutionConfig 设置并行度
    另一种方法是获取 ExecutionConfig 并在其上设置并行度:
ExecutionConfig executionConfig = env.getConfig();
executionConfig.setParallelism(parallelism);

这将设置所有未显式设置并行度的算子的并行度。

以下为热心网友提供的参考意见

在Flink中,你可以通过以下方法为join操作设置并行度:

  1. 使用ExecutionEnvironment的setParallelism方法。首先,你需要创建一个ExecutionEnvironment实例,然后调用setParallelism方法来设置并行度。例如:
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(parallelism);
  1. 使用StreamExecutionEnvironment的createInputFormat方法。这个方法允许你根据输入格式来设置并行度。例如:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.createInputFormat(MyInputFormat.class, MyPOJO.class).setParallelism(parallelism);
  1. 使用DataStream的assignTimestampsAndWatermarks方法和transform方法。这两个方法都允许你在转换操作中设置并行度。例如:
DataStream<MyPOJO> dataStream = env.fromElements(...);
dataStream.assignTimestampsAndWatermarks(new MyTimestampAssigner()).setParallelism(parallelism);
dataStream.transform("Join", TypeInformation.of(MyPOJO.class), new MyJoinFunction()).setParallelism(parallelism);

注意:这些方法设置的并行度只对当前操作有效,不会影响到其他操作。如果你希望在整个Flink作业中使用相同的并行度,可以在创建ExecutionEnvironment时设置全局并行度。

以下为热心网友提供的参考意见

并行度的设置
在 Flink 中,可以用不同的方法来设置并行度,它们的有效范围和优先级别也是不同的。

(1)代码中设置,我们在代码中,可以很简单地在算子后跟着调用 setParallelism()方法,来设置当前算子的并行度:

stream.map((_,1)).setParallelism(2)
这种方式设置的并行度,只针对当前算子有效。另外,我们也可以直接调用执行环境的 setParallelism()方法,全局设定并行度:

env.setParallelism(2)
这样代码中所有算子,默认的并行度就都为 2 了。我们一般不会在程序中设置全局并行度,因为如果在程序中对全局并行度进行硬编码,会导致无法动态扩容。这里要注意的是,由于 keyBy()方法返回的不是算子,所以无法对 keyBy()设置并行度。

(2)提交作业时设置

在使用 flink run 命令提交作业时,可以增加-p 参数来指定当前应用程序执行的并行度,它的作用类似于执行环境的全局设置:

bin/flink run –p 2 –c com.atguigu.wc.StreamWordCount

./FlinkTutorial-1.0-SNAPSHOT.jar
如果我们直接在 Web UI 上提交作业,也可以在对应输入框中直接添加并行度。

(3)配置文件中设置

我们还可以直接在集群的配置文件 flink-conf.yaml 中直接更改默认并行度:

parallelism.default: 2
这个设置对于整个集群上提交的所有作业有效,初始值为 1。无论在代码中设置、还是提交时的-p 参数,都不是必须的。所以,在没有指定并行度的时候,就会采用配置文件中的集群默认并行度

参考:Apache Flink 并行度 Parallelismhttps://blog.csdn.net/lucklilili/article/details/128421426

转转请注明出处:https://www.yunxiaoer.com/174064.html

(0)
上一篇 2023年12月18日
下一篇 2023年12月18日
详情页2

相关推荐

  • 跨云公网传输,大家基于flink有无比较好的数据安全方案?-云小二-阿里云

    跨云公网传输,大家基于flink有无比较好的数据安全方案? 以下为热心网友提供的参考意见 对于基于Flink的数据跨云公网传输,以下是一些数据安全措施: a. 加密传输:确保在公网上传输的数据使用SSL/TLS进行加密,以防止数据在传输过程中被窃取。 b. 身份验证和授权:使用安全的身份验证机制(如OAuth、JWT等)来验证发送和接收数据的双方身份,并实施…

    阿里云 2023年12月18日
  • streamAPI闯天下,用什么flinkSQL?-云小二-阿里云

    streamAPI闯天下,用什么flinkSQL?flinkSQL也要转换成stream运行,SQL是建立在stream之上的 以下为热心网友提供的参考意见 Flink SQL 是一种用于处理有界和无界数据的声明式语言,它建立在 Flink 流处理引擎之上。使用 Flink SQL,你可以编写类似于传统关系型数据库的查询语句来处理数据流。 Flink SQL…

    阿里云 2024年1月9日
  • flink全托管 跟flink有什么区别呢?-云小二-阿里云

    flink全托管 跟flink有什么区别呢? 以下为热心网友提供的参考意见 Flink全托管和Flink实时计算版主要有以下区别: 服务架构方面,”Flink全托管”采用存储计算分离架构,使用对象存储OSS来存储作业系统检查点、作业快照、日志和JAR包等信息。而”实时计算Flink版”是阿里云提供的一种全托管S…

    阿里云 2024年1月10日
  • 信息流广告,信息流部分建议宽度830px,只针对默认列表样式,顺序随机
  • coordinate字段 是point类型 flink不支持怎么办 ? -云小二-阿里云

    coordinate字段 是point类型 flink不支持怎么办 ? 我在flinksql改成string的话 写入时报错 以下为热心网友提供的参考意见 如果Flink不支持coordinate字段的point类型,您可以尝试进行字段类型的映射和转换。因为下游存储支持的字段类型和Flink全托管支持的字段类型可能不完全一致,但存在一定的映射关系。例如,可以…

    2024年1月4日
  • 咨询一下Flink 如果我一个表标签存的是用户id 标签code 标签值,应该怎么实现啊?-云小二-阿里云

    咨询一下Flink 如果我一个表标签存的是用户id 标签code 标签值,我想把他变成 大宽表的形式 用户id 标签a 标签b 标签c 用flinksql 应该怎么实现啊? 以下为热心网友提供的参考意见 多加三个if判断的结果的取max然后聚合,你业务主键设置的不合理 ,此回答整理自钉群“实时计算Flink产品交流群” 以下为热心网友提供的参考意见 你可以使…

    阿里云 2024年1月4日

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信
本站为广大会员提供阿里云、腾讯云、华为云、百度云等一线大厂的购买,续费优惠,保证底价,买贵退差。