详情页标题前

阿里云人工智能平台PAI图像智能处理类模型-云淘科技

详情页1

在ModelHub中,PAI提供多种已经训练好的图像智能类模型供您使用,本文为您介绍每种模型的输入格式、输出格式及使用示例。

PAI提供以下训练好的成熟图像智能处理类模型,帮助您快速触达业务:

模型 功能
通用图像分类模型 识别常见物体的类别。
通用图像检测模型 识别常见物体的类别并返回位置信息。
图像语义分割模型 能够输出分割物体的类别和分割的Mask信息。
图像实例分割模型 能够输出常见物体的类别信息、位置信息及Mask信息。
通用OCR模型 能够进行文本检测、文本识别。
前景分割模型 针对短视频、直播等场景,进行人物分割。
场景分类模型 识别图片内容反映的各种室内外场景。例如,天空、沙滩、蓝天、厨房及音乐厅。
货架商品计数模型 能够返回常见物体的类别信息、检测框位置及图像中每类商品的计数。
通用图片相似度比对模型 能够返回两张输入图片的相似度,适用于图片比对和检索场景。
图片上色模型 能够返回上色后的彩色图片。

ModelHub登录入口

您可以通过如下方法进入ModelHub:

  1. 登录PAI控制台。
  2. 在左侧导航栏,选择大数据与AI体验 > ModelHub。

通用图像分类模型

  • 模型介绍

    基于ImageNet数据集训练的图像分类模型,能够识别常见物体的类别。该模型采用ResNet,详情请参见Deep Residual Learning for Image Recognition。

  • 输入格式
    输入数据为JSON格式字符串,包含image字段,对应的value为图片内容的Base 64编码。

    {
      "image": "图像文件内容的Base 64编码"
    }
  • 输出格式
    输出数据为JSON格式字符串,包含的字段如下表所示。

    字段 描述 Shape Type
    class 类别ID [] INT32
    class_name 类别名称 [] STRING
    class_probs 所有类别概率 [num_classes] Dict[STRING, FLOAT]
    request_id 请求的唯一标识 [] STRING
    success 请求是否成功 [] BOOL
    error_code 请求错误码 [] INT
    error_msg 请求错误信息 [] STRING

    输出数据的示例如下。

    {
    "class": 3,
    "class_name": "coho4",
    "class_probs": {"coho1": 4.028851974258174e-10,
              "coho2": 0.48115724325180054,
              "coho3": 5.116515922054532e-07,
              "coho4": 0.5188422446937221},
     "request_id": "9ac294a4-f387-4c48-b640-d2c6d41f****",
     "success": true
    }
  • 测试数据

    下载通用图像分类模型的测试数据

通用图像检测模型

  • 模型介绍

    该模型能够识别常见物体的类别并返回位置信息,采用Faster R-CNN,详情请参见Towards Real-Time Object Detection with Region Proposal Networks。模型的训练数据集为COCO。

  • 输入格式
    输入数据为JSON格式字符串,包含image字段,对应的value为图片内容的Base 64编码。

    {
      "image": "图像文件内容的Base 64编码"
    }
  • 输出格式
    输出数据为JSON格式字符串,包含的字段如下表所示。

    字段 描述 Shape Type
    detection_boxes 检测到的目标框[y1, x1, y2,x2],其坐标顺序为[top, left, bottom, right]。 [num_detections, 4] FLOAT
    detection_scores 目标检测概率。 num_detections FLOAT
    detection_classes 目标区域类别ID。 num_detections INT
    detection_class_names 目标区域类别名称。 num_detections STRING
    request_id 请求的唯一标识。 [] STRING
    success 请求是否成功。 [] BOOL
    error_code 请求错误码。 [] INT
    error_msg 请求错误信息。 [] STRING

    输出数据的示例如下。

    {
      "detection_boxes": [[243.5308074951172, 197.69570922851562, 385.59625244140625, 247.7247772216797], [292.1929931640625, 114.28043365478516, 571.2748413085938, 165.09771728515625]],
      "detection_scores": [0.9942291975021362, 0.9940272569656372],
      "detection_classes": [1, 1],
      "detection_classe_names": ["text", "text"],
      "request_id": "9ac294a4-f387-4c48-b640-d2c6d41f****",
      "success": true
     }

图像语义分割模型

  • 模型介绍

    该模型能够识别分割物体的类别和分割的Mask信息,采用DeepLab V3,详情请参见Rethinking Atrous Convolution for Semantic Image Segmentation。模型的训练数据集为Pascal_Voc。

  • 输入格式
    输入数据为JSON格式字符串,包含image字段,对应的value为图片内容的Base 64编码。

    {
      "image": "图像文件内容的Base 64编码"
    }
  • 输出格式
    输出数据为JSON格式字符串,包含的字段如下表所示。

    字段 描述 Shape Type
    probs 分割像素点概率 [output_height, output_width] FLOAT
    preds 分割像素类别ID [output_height, output_widths] INT
    request_id 请求的唯一标识 [] STRING
    success 请求是否成功 [] BOOL
    error_code 请求错误码 [] INT
    error_msg 请求错误信息 [] STRING

    输出数据的示例如下。

    {
      "probs" : [[[0.8, 0.8], [0.6, 0.7]],[[0.8, 0.5], [0.4, 0.3]]],
      "preds" : [[1,1], [0, 0]],
       "request_id": "9ac294a4-f387-4c48-b640-d2c6d41f****",
       "success": true
    }
  • 测试数据

    下载图像语义分割模型的测试数据

图像实例分割模型

  • 模型介绍

    该模型能够识别常见物体的类别信息、位置信息及Mask信息,采用Mask R-CNN,详情请参见Mask R-CNN。模型的训练数据集为COCO。

  • 输入格式
    输入数据为JSON格式字符串,包含image字段,对应的value为图片内容的Base 64编码。

    {
      "image": "图像文件内容的Base 64编码"
    }
  • 输出格式
    输出数据为JSON格式字符串,包含的字段如下表所示。

    字段 描述 Shape Type
    detection_boxes 检测到的目标框[y1, x1, y2,x2],其坐标顺序为[top, left, bottom, right]。 [num_detections, 4] FLOAT
    detection_scores 目标检测概率。 num_detections FLOAT
    detection_classes 目标区域类别ID。 num_detections INT
    detection_class_names 目标区域类别名称。 num_detections STRING
    detection_masks 目标区域的Mask。采用RLE编码,每个Mask对应如下两个属性:

    • size:对应Mask图像的[height, width]。
    • counts:对应Mask的RLE编码数据。奇数位表示连续为False的个数,偶数位表示连续为True的个数。例如,[True False, False, True]的编码为[0,1,2,1]。 解码RLE数据后,可以根据size把Mask数据序列Reshape成一个Mask二维掩码。
    [num_detections] DICT
    request_id 请求的唯一标识。 [] STRING
    success 请求是否成功。 [] BOOL
    error_code 请求错误码。 [] INT
    error_msg 请求错误信息。 [] STRING

    输出数据的示例如下。

    {
      "detection_boxes": [[243.5308074951172, 197.69570922851562, 385.59625244140625, 247.7247772216797], [292.1929931640625, 114.28043365478516, 571.2748413085938, 165.09771728515625]],
      "detection_scores": [0.9942291975021362, 0.9940272569656372],
      "detection_classes": [1, 1],
      "detection_classe_names": ["text", "text"],
      "detection_masks": [{"counts": [398408, 11, 671, 30, 652, 44, 636], "size":[640, 480]},
                          {"counts": [398408, 11, 671, 30, 652, 44, 636], "size":[640, 480]}],
       "request_id": "9ac294a4-f387-4c48-b640-d2c6d41f****",
       "success": true
     }

通用OCR模型

  • 模型介绍

    该模型采用PAI自研的端到端OCR模型,能够进行文本检测、文本识别。

  • 输入格式
    输入数据为JSON格式字符串,包含image字段,对应的value为图片内容的Base 64编码。

    {
      "image": "图像文件内容的Base 64编码"
    }
  • 输出格式
    输出数据为JSON格式字符串,包含的字段如下表所示。

    字段 描述 Shape Type
    detection_boxes 检测到的文字框,坐标顺序 [top, left, bottom, right]。 [num_detections, 4] FLOAT
    detection_scores 文字检测概率。 num_detections FLOAT
    detection_classes 文字区域类别ID。 num_detections INT
    detection_class_names 文字区域类别名称。 num_detections STRING
    detection_keypoints 检测到的文字区域四个角点,每个点的坐标为(y,x) [num_detections, 4, 2] float
    detection_texts_ids 单行文字识别类别ID。 [num_detections, max_text_length] INT
    detection_texts 单行文字识别结果。 [num_detections] STRING
    detection_texts_scores 单行文字识别概率。 [num_detections] FLOAT
    request_id 请求的唯一标识。 [] STRING
    success 请求是否成功。 [] BOOL
    error_code 请求错误码。 [] INT
    error_msg 请求错误信息。 [] STRING

    输出数据的示例如下。

     {
      "detection_keypoints": [[[243.57516479492188, 198.84210205078125], [243.91038513183594, 247.62425231933594], [385.5513916015625, 246.61660766601562], [385.2197570800781, 197.79345703125]], [[292.2718200683594, 114.44700622558594], [292.2237243652344, 164.684814453125], [571.1962890625, 164.931640625], [571.2444458007812, 114.67433166503906]]], 
      "detection_boxes": [[243.5308074951172, 197.69570922851562, 385.59625244140625, 247.7247772216797], [292.1929931640625, 114.28043365478516, 571.2748413085938, 165.09771728515625]], 
      "detection_scores": [0.9942291975021362, 0.9940272569656372],
      "detection_classes": [1, 1],
      "detection_classe_names": ["text", "text"],
      "detection_texts_ids" : [[1,2,2008,12], [1,2,2008,12]],
      "detection_texts": ["这是示例", "这是示例"],
      "detection_texts_scores" : [0.88, 0.88],
      "request_id": "9ac294a4-f387-4c48-b640-d2c6d41f****",
      "success": true
     }
  • 测试数据

    下载通用OCR模型的测试数据

前景分割模型

  • 模型介绍

    基于MobileNet训练的前景分割模型。针对短视频、直播等场景,进行人物分割。

  • 输入格式
    输入数据是JSON格式字符串,包含图片的url字段。具体格式如下。

    {
      "input": {
        "url": "输入图片的URL"
      }
    }
  • 输出格式
    输出数据为JSON格式字符串,包含的字段如下表所示。

    字段 描述 Shape Type
    human_ratio 前景占的比例 [] STRING
    mask 前景Mask [h,w] LIST
  • 示例
    例如,为该模型输入如下测试数据。

    {"input" : {"url": "http://yq****.oss-cn-hangzhou-zmf.aliyuncs.com/tb_quality.png"}}

    系统输出的结果详见结果样例。

场景分类模型

  • 模型介绍

    该模型采用ResNet结构,详情请参见Deep Residual Learning for Image Recognition。该模型能够识别图片内容反映的各种室内外场景,例如天空、沙滩、蓝天、厨房及音乐厅等。

  • 输入格式
    输入数据为JSON格式字符串,包含image字段,对应的value为图片内容的Base 64编码。

    {
      "image": "图像文件内容的Base 64编码"
    }
  • 输出格式
    输出数据为JSON格式字符串,包含的字段如下表所示。

    字段 描述 Shape Type
    class Top 5类别ID。 5 INT32
    class_name Top 5类别名称。 5 STRING
    class_probs 所有类别的概率。 [num_classes] Dict[STRING, FLOAT]
    request_id 请求的唯一标识。 [] STRING
    success 请求是否成功,包括如下取值:

    • true:请求成功。
    • false:请求失败。
    [] BOOL
    error_code 请求失败时,返回的错误码。 [] INT
    error_msg 请求失败时,返回的错误信息。 [] STRING

    输出数据的示例如下。

    {
        "request_id": "a72304d8-cf84-479e-b29e-5e341e3d****", 
        "success": true, 
        "class": [266, 57, 159,  260,  243], 
        "class_name": [
            "pier", 
            "boardwalk", 
            "gazebo-exterior", 
            "pavilion", 
            "ocean"
        ], 
        "class_probs": {
            "airfield": 2.6841306066671677e-8, 
            "airplane_cabin": 2.4176902702066627e-9, 
            "airport_terminal": 1.3229835360561992e-7, 
            "alcove": 1.5998873337252917e-8, 
            "alley": 7.053529316181084e-8, 
            "amphitheater": 2.0278820400676523e-8, 
            "amusement_arcade": 1.5128257757623942e-8, 
            "amusement_park": 6.29929459705636e-8, 
            "apartment_building-outdoor": 1.846876926947516e-7, 
            "aquarium": 6.034031940771456e-8, 
            "aqueduct": 1.6192875307297072e-7, 
            "arcade": 3.719276833180629e-7, 
            "arch": 0.000001615617293282412, 
            "archaelogical_excavation": 1.9157377906253714e-9, 
            "archive": 1.915566905097421e-8
        }
    }

货架商品计数模型

  • 模型介绍
    该模型采用YoloV5检测模型和细粒度分类模型两阶段串联,能够返回常见物体的类别信息、检测框位置及图像中每类商品的计数。目前,该模型共支持171种不同的瓶饮SKU类别,类别名称列表如下所示。

    CLASSES = ['189', '772', '773', '307', '306', '305', '304', '303', '757', '342', '343', '344', '5', '346', '347', '348', '349', '438', '439', '440', '441', '341', '460', '457', '764', '459', '469', '329', '331', '332', '333', '334', '762', '763', '337', '338', '340', '471', '470', '336', '335', '767', '770', '769', '758', '455', '456', '454', '446', '775', '761', '778', '777', '779', '789', '780', '453', '452', '451', '450', '449', '448', '444', '447', '445', '472', '468', '190', '759', '195', '196', '301', '300', '188', '186', '185', '184', '183', '182', '181', '308', '309', '310', '311', '734', '312', '313', '355', '339', '774', '791', '180', '187', '198', '197', '368', '369', '299', '298', '374', '372', '373', '371', '370', '350', '351', '352', '353', '755', '754', '429', '432', '431', '753', '433', '434', '435', '436', '437', '718', '717', '716', '715', '714', '712', '430', '354', '200', '6', '476', '477', '478', '479', '713', '474', '473', '768', '443', '442', '321', '315', '318', '316', '322', '317', '319', '179', '320', '324', '323', '325', '326', '327', '328', '330', '458', '776', '765', '766', '4', '461', '199', '462', '464', '466', '467', '756', '465', '463', '719', '4345']
  • 输入格式
    输入数据为JSON格式字符串,包含image字段,对应的value为图片内容的Base 64编码。

    {
      "image": "图像文件内容的Base 64编码"
    }
  • 输出格式
    输出数据为JSON格式字符,包含的字段如下表所示。

    字段 描述 Shape Type
    detection_boxes 检测到的目标框[y1, x1, y2,x2],其坐标顺序为[top, left, bottom, right]。 [num_detections, 4] FLOAT
    detection_scores 目标检测概率。 num_detections FLOAT
    detection_classes 目标区域类别ID。 num_detections INT
    detection_class_names 目标区域类别名称。 num_detections STRING
    product_count 商品计数。 num_classes DICT/INT
    request_id 请求的唯一标识。 [] STRING
    success 请求是否成功。 [] BOOL
    error_code 请求错误码。 [] INT
    error_msg 请求错误信息。 [] STRING

    输出数据的示例如下。

    {
        "request_id": "c3e8572d-95fc-479c-8fa9-bfe5b9be****", 
        "success": true, 
        "ori_img_shape": [1280, 1706], 
        "detection_boxes": [[1630.1121826171875, 548.7086791992188, 1702.461181640625, 763.6509399414062], [1620.415283203125, 94.60894775390625, 1682.6427001953125, 233.49900817871094], [1553.8291015625, 98.07244110107422, 1617.0072021484375, 235.3670196533203], [1172.0789794921875, 777.32861328125, 1226.4949951171875, 959.086669921875], [772.0833129882812, 758.675048828125, 825.0681762695312, 913.5953369140625], [828.8756713867188, 760.6256713867188, 882.7286376953125, 920.3554077148438], [987.754150390625, 1031.87841796875, 1044.6632080078125, 1207.215576171875], [1111.7740478515625, 772.5474243164062, 1167.0968017578125, 951.8721923828125], [886.6332397460938, 765.0888061523438, 938.5805053710938, 927.5157470703125], [1345.31689453125, 1060.8140869140625, 1406.5404052734375, 1269.9930419921875], [1371.146728515625, 112.70679473876953, 1427.5396728515625, 245.45986938476562], [1560.9510498046875, 545.3655395507812, 1626.23876953125, 761.7933349609375], [1197.1800537109375, 123.90782165527344, 1249.66357421875, 253.5529022216797], [1310.7371826171875, 115.76203918457031, 1367.01904296875, 248.2571563720703], [1107.890380859375, 1023.4066772460938, 1164.3438720703125, 1228.36865234375], [942.4257202148438, 771.8615112304688, 998.5577392578125, 934.6956176757812], [1002.333984375, 777.1546020507812, 1060.7852783203125, 941.6340942382812], [1493.2554931640625, 544.4757080078125, 1557.4088134765625, 657.531005859375], [631.6664428710938, 322.0820007324219, 678.197265625, 486.9432067871094], [1407.86865234375, 363.3863220214844, 1468.095458984375, 498.1813049316406], [653.595458984375, 970.340087890625, 703.8126220703125, 1146.232666015625], [1173.056884765625, 538.8171997070312, 1228.7896728515625, 644.2966918945312], [585.7047119140625, 321.9823913574219, 628.947021484375, 487.156982421875], [891.7557983398438, 336.12506103515625, 947.5447387695312, 494.72930908203125], [1179.0208740234375, 368.91839599609375, 1231.1116943359375, 497.6968078613281], [730.7046508789062, 319.1811218261719, 779.738037109375, 489.42919921875], [791.6107177734375, 540.0254516601562, 838.8424072265625, 710.7826538085938], [1289.136962890625, 367.61407470703125, 1343.65478515625, 497.8343505859375], [1049.073974609375, 1039.80419921875, 1103.576904296875, 1216.981689453125], [1072.4429931640625, 100.25904083251953, 1130.01171875, 186.9414825439453], [1026.8106689453125, 9.758943557739258, 1084.0970458984375, 96.64080810546875], [457.7298278808594, 948.81640625, 507.786376953125, 1111.3463134765625], [1234.4410400390625, 368.9875793457031, 1285.9132080078125, 496.5082092285156], [1133.8148193359375, 95.66622924804688, 1192.635986328125, 183.7876434326172], [1229.1578369140625, 1036.1744384765625, 1292.0968017578125, 1250.7900390625], [390.2349548339844, 719.7738647460938, 439.1220397949219, 872.43115234375], [1347.3271484375, 365.58258056640625, 1403.486572265625, 497.9493103027344], [622.7703857421875, 745.740478515625, 667.4136352539062, 899.0189819335938], [811.9891967773438, 1007.6695556640625, 869.5931396484375, 1174.7613525390625], [1473.03759765625, 359.28070068359375, 1535.2049560546875, 498.5074462890625], [757.7261962890625, 998.3402099609375, 807.4312744140625, 1163.7625732421875], [1253.5140380859375, 120.7535171508789, 1306.639892578125, 249.9414825439453], [1087.5078125, 5.977339744567871, 1146.104736328125, 93.57987213134766], [1423.3592529296875, 543.2384033203125, 1487.9222412109375, 655.9434204101562], [842.3613891601562, 543.4869384765625, 894.4482421875, 713.8154296875], [443.619140625, 730.7120361328125, 485.4419860839844, 877.8041381835938], [539.8949584960938, 323.5038146972656, 583.0478515625, 486.302978515625], [706.948974609375, 976.8787841796875, 754.7720336914062, 1153.9981689453125], [929.3824462890625, 1025.2862548828125, 983.93212890625, 1199.8162841796875], [1012.2584228515625, 105.00666046142578, 1068.331787109375, 189.37049865722656], [1269.915771484375, 21.24080467224121, 1322.0224609375, 115.1187973022461], [577.4571533203125, 742.8727416992188, 619.8193969726562, 894.5945434570312], [541.6632080078125, 527.994140625, 582.3711547851562, 689.1560668945312], [1232.9144287109375, 540.1036376953125, 1291.3621826171875, 647.2518920898438], [692.6676635742188, 541.361083984375, 738.5997314453125, 703.142578125], [1353.6865234375, 788.33740234375, 1403.29052734375, 957.48583984375], [952.47900390625, 334.1702880859375, 1007.0637817382812, 494.97747802734375], [430.1739196777344, 535.9578857421875, 484.27825927734375, 686.00732421875], [1360.4755859375, 541.090576171875, 1417.861328125, 651.1341552734375], [946.75244140625, 545.697998046875, 995.1062622070312, 721.5091552734375], [969.4580078125, 13.584962844848633, 1023.1282958984375, 98.95903015136719], [670.2022705078125, 748.6325073242188, 714.4813842773438, 903.7423095703125], [1229.794189453125, 779.18212890625, 1278.884033203125, 948.625], [1488.02197265625, 661.7587280273438, 1551.5296630859375, 756.6237182617188], [1590.016357421875, 806.0292358398438, 1655.314453125, 994.7868041992188], [1477.2318115234375, 1076.368896484375, 1536.288818359375, 1277.616943359375], [1411.1800537109375, 1069.7974853515625, 1473.112548828125, 1275.5064697265625], [1621.7462158203125, 2.3413498401641846, 1680.2470703125, 90.46394348144531], [1325.664794921875, 18.60450553894043, 1378.037353515625, 111.77281188964844], [1214.715087890625, 25.299074172973633, 1264.5130615234375, 117.62701416015625], [1124.7440185546875, 369.00946044921875, 1175.7701416015625, 496.77911376953125], [741.9351196289062, 539.4319458007812, 789.4860229492188, 706.5347900390625], [1010.46630859375, 319.15960693359375, 1061.8902587890625, 494.5950012207031], [348.3062744140625, 324.97149658203125, 393.9333190917969, 480.3936767578125], [510.96856689453125, 953.662109375, 555.7396240234375, 1118.6304931640625], [1066.5125732421875, 319.3757629394531, 1120.20947265625, 494.90948486328125], [1055.790771484375, 549.7044677734375, 1109.9053955078125, 727.7008666992188], [1172.795654296875, 648.4998779296875, 1227.1788330078125, 738.3115844726562], [585.5626831054688, 528.1153564453125, 631.716796875, 691.9830932617188], [559.0197143554688, 958.7254638671875, 609.9586791992188, 1125.0369873046875], [98.20995330810547, 328.4491882324219, 139.44583129882812, 475.39495849609375], [717.43896484375, 755.4843139648438, 768.76318359375, 908.827880859375], [1296.5169677734375, 540.7620849609375, 1355.987548828125, 650.4367065429688], [1231.087646484375, 650.8126220703125, 1289.8023681640625, 742.1888427734375], [319.880615234375, 935.620849609375, 359.2186584472656, 1089.6805419921875], [498.1044921875, 526.2054443359375, 539.1546630859375, 686.7112426757812], [1529.4716796875, 801.7390747070312, 1585.5760498046875, 965.0985717773438], [141.8803253173828, 326.2720031738281, 178.31863403320312, 476.8468933105469], [180.48562622070312, 325.25469970703125, 218.10015869140625, 477.2813720703125], [1356.2423095703125, 655.6692504882812, 1414.081787109375, 748.3955688476562], [644.6302490234375, 539.3516845703125, 690.34033203125, 699.429443359375], [1132.5467529296875, 189.2131805419922, 1190.796875, 256.9765625], [1150.775390625, 2.947110891342163, 1208.0450439453125, 89.4374008178711], [1558.8004150390625, 4.572126865386963, 1617.202392578125, 93.98892974853516], [999.533203125, 546.2440185546875, 1051.2882080078125, 725.1801147460938], [1658.9302978515625, 809.345458984375, 1706.0, 987.3961791992188], [301.7475280761719, 322.6171875, 345.1357727050781, 479.57415771484375], [1441.016845703125, 10.674417495727539, 1494.4871826171875, 104.4920883178711], [0.0, 332.31707763671875, 27.537397384643555, 473.57806396484375], [1168.52880859375, 1028.2525634765625, 1224.62646484375, 1242.695556640625], [385.0355529785156, 527.996337890625, 426.7388000488281, 679.4779663085938], [1290.9697265625, 785.00537109375, 1349.5552978515625, 969.3139038085938], [1115.1236572265625, 636.8223876953125, 1168.280029296875, 733.9985961914062], [220.47109985351562, 323.8011169433594, 257.4023132324219, 478.64166259765625], [264.0448303222656, 714.7813110351562, 302.7651672363281, 859.0498046875], [345.0574645996094, 716.671630859375, 387.1029052734375, 867.1668701171875], [206.6976776123047, 922.9601440429688, 246.54168701171875, 1076.590087890625], [1.044507384300232, 528.8065795898438, 35.633365631103516, 654.75244140625], [724.311279296875, 127.85202026367188, 779.6589965820312, 272.2434387207031], [1431.4530029296875, 110.81505584716797, 1488.5677490234375, 242.13816833496094], [361.1867370605469, 938.4345092773438, 398.9381103515625, 1095.2716064453125], [532.401611328125, 739.7827758789062, 574.7199096679688, 889.4303588867188], [214.19235229492188, 712.5242919921875, 260.76123046875, 854.987060546875], [1419.115234375, 659.1714477539062, 1482.155029296875, 752.891357421875], [1294.6837158203125, 653.4657592773438, 1351.66552734375, 745.649169921875], [1541.1834716796875, 359.8212890625, 1604.64599609375, 497.11737060546875], [1382.46533203125, 14.316915512084961, 1436.901123046875, 108.40576171875], [302.00823974609375, 531.2684936523438, 340.7933654785156, 673.8898315429688], [674.8233642578125, 127.94266510009766, 720.9671630859375, 273.1181335449219], [1462.7388916015625, 798.2828979492188, 1524.7061767578125, 960.7492065429688], [496.38641357421875, 326.00018310546875, 536.8085327148438, 484.9526062011719], [30.211156845092773, 329.74224853515625, 81.44339752197266, 475.31939697265625], [37.6212043762207, 529.85986328125, 71.42378997802734, 656.5762939453125], [1542.1700439453125, 1102.0360107421875, 1598.62451171875, 1278.4517822265625], [900.517822265625, 537.5365600585938, 944.1212158203125, 713.9387817382812], [259.7227783203125, 323.3601379394531, 298.8307800292969, 478.821044921875], [1070.843994140625, 191.7174530029297, 1128.8150634765625, 259.4518737792969], [487.79217529296875, 735.4498291015625, 529.3167114257812, 882.5300903320312], [61.2783088684082, 904.1649169921875, 96.44532775878906, 1050.5137939453125], [260.006103515625, 532.0455932617188, 299.47967529296875, 672.3739013671875], [470.2472839355469, 194.9483642578125, 519.4772338867188, 278.3583984375], [1407.2518310546875, 791.810791015625, 1457.4464111328125, 943.2254638671875], [680.8636474609375, 321.4189758300781, 727.7527465820312, 487.68475341796875], [495.5222473144531, 112.64205932617188, 546.762451171875, 189.70358276367188], [956.587890625, 107.38723754882812, 1008.4374389648438, 190.20643615722656], [140.90228271484375, 535.46337890625, 175.36212158203125, 663.3697509765625], [522.7005615234375, 193.42730712890625, 575.5490112304688, 278.0523681640625], [305.0035705566406, 717.711181640625, 342.8013610839844, 862.4851684570312], [414.94366455078125, 198.54217529296875, 467.16632080078125, 281.4034423828125], [281.9747314453125, 929.93896484375, 317.1320495605469, 1086.060791015625], [167.65818786621094, 918.7197265625, 204.38609313964844, 1066.5509033203125], [343.3868103027344, 526.7223510742188, 382.8097229003906, 675.83349609375], [1603.56494140625, 1117.916748046875, 1662.6053466796875, 1278.85546875], [74.37649536132812, 702.6388549804688, 126.43260955810547, 841.2471313476562], [21.8240909576416, 900.139892578125, 59.19005584716797, 1042.6815185546875], [106.59941864013672, 534.1705932617188, 139.18856811523438, 660.86474609375], [1012.179931640625, 193.49234008789062, 1066.67333984375, 260.82550048828125], [397.4151611328125, 324.3984375, 448.72412109375, 482.9453125], [73.04920196533203, 529.44970703125, 104.75665283203125, 658.6680908203125], [248.28958129882812, 925.177001953125, 280.4014587402344, 1080.201416015625], [178.4268035888672, 535.2265014648438, 230.94168090820312, 666.9403076171875], [884.0213623046875, 987.2916259765625, 927.0027465820312, 1156.64501953125], [549.9115600585938, 106.3712387084961, 596.8367919921875, 188.5158233642578], [443.46502685546875, 114.68463897705078, 491.8631896972656, 192.1271209716797], [1.4715739488601685, 693.3464965820312, 36.453121185302734, 830.9559936523438], [38.31742858886719, 695.1664428710938, 72.37419891357422, 835.30615234375], [954.9435424804688, 195.2787628173828, 1008.845458984375, 259.7560729980469], [1667.5626220703125, 1134.794677734375, 1706.0, 1279.4964599609375], [1686.12548828125, 93.76277923583984, 1705.9976806640625, 229.68470764160156], [600.6934204101562, 101.86792755126953, 639.33349609375, 186.12889099121094], [579.7816772460938, 191.2084503173828, 622.8585815429688, 285.9966125488281], [838.6114501953125, 133.8973846435547, 893.9561767578125, 266.54144287109375], [173.06097412109375, 93.7769546508789, 222.9745330810547, 227.4434814453125], [267.94830322265625, 194.88739013671875, 329.9585876464844, 281.4122619628906], [625.7830810546875, 188.23483276367188, 669.029296875, 284.2396545410156], [1500.2259521484375, 5.001504421234131, 1549.6607666015625, 157.59373474121094], [897.1384887695312, 141.02505493164062, 951.2171020507812, 265.0691223144531], [131.01351928710938, 909.6174926757812, 165.9655303955078, 1059.8583984375], [5.650207042694092, 171.43228149414062, 41.43198013305664, 293.5045471191406], [401.110595703125, 943.1052856445312, 446.6176452636719, 1101.0853271484375], [642.322509765625, 98.64411163330078, 679.0467529296875, 185.11129760742188], [783.5684204101562, 321.5312194824219, 840.6314086914062, 491.3663635253906], [388.7322692871094, 110.36902618408203, 437.2371520996094, 189.37811279296875], [904.7755126953125, 24.372352600097656, 956.6429443359375, 140.1663055419922], [42.415218353271484, 169.89064025878906, 84.30032348632812, 293.67529296875], [1123.1492919921875, 536.31298828125, 1168.6253662109375, 629.7305908203125], [1066.952880859375, 766.4168090820312, 1109.4813232421875, 931.3811645507812], [97.95085906982422, 902.5506591796875, 129.5143280029297, 1048.4857177734375], [847.4807739257812, 27.722585678100586, 900.123291015625, 139.66189575195312], [127.729248046875, 96.03638458251953, 169.45960998535156, 230.73397827148438], [340.8103942871094, 118.04727935791016, 384.4753112792969, 187.30514526367188], [139.41033935546875, 696.455078125, 177.34764099121094, 846.3213500976562], [792.2659301757812, 31.95219612121582, 841.621337890625, 170.00433349609375], [469.0047302246094, 324.67108154296875, 496.4168701171875, 482.1776428222656], [0.0, 884.8282470703125, 17.672161102294922, 1034.2427978515625], [1304.42431640625, 1016.9224853515625, 1344.2850341796875, 1127.891845703125], [853.4427490234375, 318.38800048828125, 890.311279296875, 489.5318603515625], [94.36766815185547, 103.63837432861328, 127.6654281616211, 235.8852081298828], [178.01722717285156, 706.8359375, 211.0641326904297, 849.4093017578125], [236.95358276367188, 92.60077667236328, 276.4069519042969, 214.38238525390625], [739.52880859375, 39.07585525512695, 788.1685180664062, 122.85972595214844], [670.7278442382812, 758.4542236328125, 767.2702026367188, 904.94873046875], [687.3861083984375, 42.37852096557617, 735.3460693359375, 126.87435150146484], [586.9550170898438, 325.20208740234375, 676.0425415039062, 484.8310546875], [1111.216064453125, 1029.0745849609375, 1223.0106201171875, 1231.901123046875], [742.7843017578125, 540.9105224609375, 837.2607421875, 707.0625610351562], [773.1411743164062, 761.5508422851562, 881.4009399414062, 914.9718017578125], [954.6842651367188, 331.9721984863281, 1059.8577880859375, 492.9162902832031], [794.1738891601562, 544.6355590820312, 890.7616577148438, 710.3450927734375], [694.3463134765625, 543.0559692382812, 787.919921875, 702.7500610351562], [1113.4049072265625, 777.3311157226562, 1224.6505126953125, 953.4342041015625], [646.5301513671875, 542.5607299804688, 736.1397705078125, 698.578857421875], [1196.8214111328125, 123.65190124511719, 1305.749755859375, 250.38565063476562], [990.5540161132812, 1039.5032958984375, 1101.88330078125, 1210.2777099609375], [1129.6866455078125, 648.4544677734375, 1226.5853271484375, 735.9266357421875], [1413.683349609375, 1075.1392822265625, 1533.6282958984375, 1273.2591552734375], [707.50732421875, 992.4437255859375, 804.9892578125, 1156.294921875], [542.0517578125, 325.77276611328125, 628.0956420898438, 484.30596923828125], [829.8920288085938, 763.3922729492188, 935.835693359375, 919.3780517578125], [1254.757080078125, 120.52075958251953, 1363.234130859375, 246.87265014648438], [623.5628051757812, 749.8399047851562, 713.0081176757812, 898.132080078125], [949.4491577148438, 548.7260131835938, 1048.52001953125, 719.8856811523438], [578.9968872070312, 747.5648803710938, 666.2469482421875, 895.8831176757812], [1126.2138671875, 370.9186096191406, 1229.4268798828125, 496.34356689453125], [1291.05615234375, 368.99163818359375, 1401.2298583984375, 497.38067626953125], [444.12347412109375, 735.2342529296875, 528.4783325195312, 878.1942138671875], [1073.3040771484375, 98.97442626953125, 1190.6715087890625, 183.95008850097656], [1372.2496337890625, 114.16034698486328, 1486.437744140625, 242.55491638183594], [534.5315551757812, 744.227783203125, 619.9736938476562, 891.4317626953125], [735.7371215820312, 323.04827880859375, 836.4581298828125, 488.6044006347656], [1215.888916015625, 23.82937240600586, 1319.39111328125, 115.29741668701172], [500.6796569824219, 326.7883605957031, 582.5845947265625, 484.3184814453125], [897.6112670898438, 336.0537109375, 1006.1414184570312, 493.0602722167969], [1027.85888671875, 9.108338356018066, 1143.273681640625, 94.31218719482422], [1326.4664306640625, 17.73615264892578, 1434.5263671875, 108.57911682128906], [958.501220703125, 106.51896667480469, 1065.1185302734375, 188.2885284423828], [1383.61376953125, 15.228241920471191, 1493.1195068359375, 106.08690643310547], [498.2950439453125, 529.564453125, 581.901123046875, 685.283447265625], [1292.169921875, 788.9209594726562, 1401.341552734375, 963.022705078125], [1071.1756591796875, 191.64903259277344, 1190.23583984375, 256.8297119140625], [955.3148803710938, 195.2711181640625, 1065.1444091796875, 259.44232177734375], [1233.7081298828125, 541.7613525390625, 1353.7147216796875, 646.1815185546875], [1407.967529296875, 365.1348876953125, 1532.2718505859375, 497.6174011230469], [110.55758666992188, 537.4360961914062, 173.7180633544922, 661.8848266601562], [443.7590637207031, 114.85882568359375, 545.1619873046875, 187.41236877441406], [580.0490112304688, 189.79864501953125, 668.0438842773438, 283.16888427734375], [472.4727783203125, 195.1262664794922, 574.6144409179688, 276.64080810546875], [1528.407958984375, 802.7838134765625, 1626.8011474609375, 976.7135620117188], [355.8107604980469, 327.94268798828125, 447.65167236328125, 480.6085205078125], [1666.717529296875, 385.0246887207031, 1706.0, 494.94146728515625], [391.5310974121094, 114.95945739746094, 491.9383850097656, 189.06500244140625], [522.8659057617188, 194.9291229248047, 621.0183715820312, 277.847412109375], [1152.6348876953125, 15.886126518249512, 1263.7197265625, 102.2232437133789], [263.6202087402344, 718.0106811523438, 333.0270690917969, 858.9365844726562]], 
        "detection_scores": [0.9273692965507507, 0.9999246597290039, 0.99989914894104, 0.999121367931366, 0.9996966123580933, 0.9995707869529724, 0.7289692163467407, 0.9995418787002563, 0.999920129776001, 0.9995354413986206, 0.999833345413208, 0.4871937930583954, 0.9999123811721802, 0.9997228980064392, 0.9958129525184631, 0.9996127486228943, 0.9998365640640259, 0.9967293739318848, 0.9999990463256836, 0.9984652996063232, 0.9996250867843628, 0.9539254903793335, 0.9534531831741333, 0.9996869564056396, 0.9999657869338989, 0.9999988079071045, 0.9999300241470337, 0.9960856437683105, 0.8885335326194763, 0.9997417330741882, 0.9997662901878357, 0.9998348951339722, 0.9999892711639404, 0.9999392032623291, 0.9971627593040466, 0.9996781349182129, 0.9997746348381042, 0.9998767375946045, 0.6801815032958984, 0.9951504468917847, 0.824370265007019, 0.9998219609260559, 0.9999841451644897, 0.9936991930007935, 0.999853253364563, 0.9992411136627197, 0.906742513179779, 0.9998705387115479, 0.9993428587913513, 0.9999606609344482, 0.9989314675331116, 0.9999186992645264, 0.990565299987793, 0.9949457049369812, 0.997605562210083, 0.5342898368835449, 0.9998645782470703, 0.9976692795753479, 0.994135856628418, 0.9992128610610962, 0.9999184608459473, 0.9668468832969666, 0.9996273517608643, 0.9305729269981384, 0.9998874664306641, 0.9996445178985596, 0.9993064403533936, 0.8758603930473328, 0.9945607781410217, 0.974999725818634, 0.9999758005142212, 0.9992790818214417, 0.9977745413780212, 0.9999972581863403, 0.9997275471687317, 0.999474823474884, 0.9999274015426636, 0.9965685606002808, 0.9923534989356995, 0.9994809031486511, 0.997495174407959, 0.9993118047714233, 0.9959633350372314, 0.9980132579803467, 0.9996987581253052, 0.9977188110351562, 0.9403359293937683, 0.9999799728393555, 0.9999897480010986, 0.990454375743866, 0.9986190795898438, 0.999550998210907, 0.9999936819076538, 0.9405861496925354, 0.9998120665550232, 0.9998401403427124, 0.9733796119689941, 0.9978960752487183, 0.9465305209159851, 0.9913039207458496, 0.9987467527389526, 0.9085096120834351, 0.9899015426635742, 0.9660815596580505, 0.9999738931655884, 0.9993909597396851, 0.9980925917625427, 0.9810968041419983, 0.9997773766517639, 0.9986379742622375, 0.9985313415527344, 0.9997103810310364, 0.9996278285980225, 0.9991834759712219, 0.9953756332397461, 0.9965437054634094, 0.9949002861976624, 0.9998812675476074, 0.9982750415802002, 0.9519234895706177, 0.83475261926651, 0.9988154172897339, 0.6579822897911072, 0.996841549873352, 0.998006284236908, 0.9875984787940979, 0.9999675750732422, 0.9993166923522949, 0.9999188184738159, 0.9570266008377075, 0.8224517107009888, 0.8004858493804932, 0.9999958276748657, 0.9868762493133545, 0.9981579184532166, 0.9995274543762207, 0.9172521233558655, 0.9999903440475464, 0.6098853349685669, 0.9996042847633362, 0.9990062117576599, 0.9985187649726868, 0.9991430044174194, 0.9985539317131042, 0.9730827808380127, 0.9935812950134277, 0.9999825954437256, 0.9999949932098389, 0.618529200553894, 0.9977074861526489, 0.9997407793998718, 0.9862242937088013, 0.4937046766281128, 0.8809532523155212, 0.9930036664009094, 0.9994494318962097, 0.9934224486351013, 0.6491010785102844, 0.8800499439239502, 0.9985900521278381, 0.9998074173927307, 0.9997654557228088, 0.9815234541893005, 0.46235981583595276, 0.999646782875061, 0.9666797518730164, 0.9996416568756104, 0.9943087697029114, 0.9969773292541504, 0.9998121857643127, 0.9933486580848694, 0.9860081076622009, 0.9596437811851501, 0.7654311060905457, 0.9637073278427124, 0.9902470111846924, 0.9970638155937195, 0.9652664065361023, 0.9454036355018616, 0.9894844889640808, 0.6968677043914795, 0.891010582447052, 0.9997339844703674, 0.99956876039505, 0.9065569639205933, 0.7655655741691589, 0.9942012429237366, 0.7919678092002869, 0.9972113966941833, 0.7805525064468384, 0.9977450370788574, 0.9495887160301208, 0.9901830554008484, 0.5698038339614868, 0.9958011507987976, 0.9998944997787476, 0.7959381341934204, 0.7920934557914734, 0.8259226679801941, 0.6261268854141235, 0.9991492033004761, 0.9997618794441223, 0.9999324083328247, 0.6555682420730591, 0.860374391078949, 0.999653697013855, 0.6417619585990906, 0.9392773509025574, 0.9997584223747253, 0.9999518394470215, 0.8577653765678406, 0.9999479055404663, 0.9998664855957031, 0.9996888637542725, 0.9999748468399048, 0.9979487061500549, 0.9995716214179993, 0.9998250603675842, 0.9998193383216858, 0.8090611100196838, 0.9891413450241089, 0.8536688685417175, 0.9995394945144653, 0.9999127388000488, 0.9870069026947021, 0.9995442032814026, 0.9964131712913513, 0.997424840927124, 0.9299638867378235, 0.9971292614936829, 0.9993711113929749, 0.9787277579307556, 0.9989132881164551, 0.9998195767402649, 0.5174880623817444, 0.9998970031738281, 0.9618293046951294, 0.41249313950538635, 0.9999809265136719, 0.9881607294082642, 0.7479101419448853, 0.9768029451370239, 0.9154120683670044, 0.9999865293502808], 
        "detection_classes": [110, 161, 161, 114, 117, 116, 124, 114, 116, 122, 95, 103, 95, 95, 123, 115, 115, 126, 71, 100, 132, 108, 8, 97, 99, 71, 104, 127, 124, 159, 159, 130, 99, 159, 123, 19, 127, 17, 133, 100, 133, 95, 159, 126, 105, 18, 8, 132, 124, 159, 95, 17, 15, 109, 16, 111, 97, 14, 126, 106, 159, 118, 114, 126, 112, 122, 122, 161, 95, 95, 99, 104, 98, 7, 130, 98, 106, 108, 15, 131, 5, 117, 109, 109, 129, 15, 111, 5, 5, 126, 16, 159, 159, 161, 106, 112, 6, 95, 4, 123, 13, 113, 107, 6, 20, 19, 128, 9, 70, 95, 129, 17, 20, 126, 109, 101, 95, 12, 70, 111, 8, 4, 10, 121, 105, 6, 159, 18, 135, 12, 79, 111, 71, 86, 159, 11, 79, 20, 159, 128, 128, 13, 121, 137, 135, 11, 159, 7, 10, 128, 11, 124, 86, 86, 136, 136, 159, 120, 161, 69, 69, 93, 67, 68, 69, 161, 94, 134, 2, 129, 69, 72, 20, 93, 1, 107, 115, 134, 93, 1, 11, 138, 70, 7, 65, 5, 72, 1, 138, 67, 70, 118, 70, 8, 123, 104, 116, 97, 105, 104, 114, 16, 95, 124, 108, 122, 132, 8, 116, 95, 17, 106, 17, 99, 127, 18, 159, 95, 17, 71, 95, 8, 97, 159, 95, 159, 95, 15, 113, 159, 159, 109, 100, 11, 86, 69, 93, 111, 7, 102, 20, 69, 159, 20], 
        "detection_class_names": ["429", "199", "199", "433", "436", "435", "712", "433", "435", "715", "368", "370", "368", "368", "714", "434", "434", "354", "301", "372", "479", "755", "757", "299", "374", "301", "350", "200", "712", "4", "4", "477", "374", "4", "714", "440", "200", "438", "713", "372", "713", "368", "4", "354", "351", "439", "757", "479", "712", "4", "368", "438", "348", "754", "349", "432", "299", "347", "354", "352", "4", "437", "433", "354", "431", "715", "715", "199", "368", "368", "374", "350", "298", "303", "477", "298", "352", "755", "348", "478", "305", "436", "754", "754", "476", "348", "432", "305", "305", "354", "349", "4", "4", "199", "352", "431", "304", "368", "306", "714", "346", "753", "353", "304", "441", "440", "6", "342", "196", "368", "476", "438", "441", "354", "754", "373", "368", "5", "196", "432", "757", "306", "343", "716", "351", "304", "4", "439", "473", "5", "181", "432", "301", "313", "4", "344", "181", "441", "4", "6", "6", "346", "716", "443", "473", "344", "4", "303", "343", "6", "344", "712", "313", "313", "768", "768", "4", "717", "199", "195", "195", "198", "190", "759", "195", "199", "197", "474", "773", "476", "195", "300", "441", "198", "772", "353", "434", "474", "198", "772", "344", "442", "196", "303", "472", "305", "300", "772", "442", "190", "196", "437", "196", "757", "714", "350", "435", "299", "351", "350", "433", "349", "368", "712", "755", "715", "479", "757", "435", "368", "438", "352", "438", "374", "200", "439", "4", "368", "438", "301", "368", "757", "299", "4", "368", "4", "368", "348", "753", "4", "4", "754", "372", "344", "313", "195", "198", "432", "303", "371", "441", "195", "4", "441"], 
        "product_count": {"429": 1, "199": 6, "433": 4, "436": 2, "435": 4, "712": 5, "715": 4, "368": 16, "370": 1, "714": 4, "434": 3, "354": 6, "301": 4, "372": 3, "479": 3, "755": 3, "757": 6, "299": 4, "374": 4, "350": 4, "200": 3, "4": 19, "477": 2, "440": 2, "438": 6, "713": 2, "351": 3, "439": 3, "348": 4, "754": 5, "349": 3, "432": 5, "347": 1, "352": 4, "437": 2, "431": 2, "298": 2, "303": 4, "478": 1, "305": 4, "476": 3, "304": 3, "306": 2, "346": 2, "753": 2, "353": 2, "441": 6, "6": 4, "342": 1, "196": 5, "373": 1, "5": 2, "343": 2, "716": 2, "473": 2, "181": 2, "313": 4, "344": 5, "443": 1, "768": 2, "717": 1, "195": 6, "198": 4, "190": 2, "759": 1, "197": 1, "474": 2, "773": 1, "300": 2, "772": 3, "442": 2, "472": 1, "371": 1}
    }

通用图片相似度比对模型

  • 模型介绍

    模型采用ResNet50,可以返回两张输入图片的相似度,适用于图片比对和检索场景。

  • 输入格式
    输入数据为JSON格式字符串,包含imagea字段和imageb字段,对应的value为图片内容的Base 64编码。

    {
      "imagea": "图像文件内容的Base 64编码",
      "imageb": "图像文件内容的Base 64编码"
    }
  • 输出格式
    输出数据为JSON格式字符串,包含的字段如下表所示。

    字段 描述 Shape Type
    similarity 输入的imagea和imageb两张图像的相似度。取值为100表示二者为同一张图片,取值小于80表示二者不是同一张图像。 [] FLOAT
    l2_distance 图片在特征空间的距离,取值越大表示越不相似。 [] FLOAT
    request_id 请求的唯一标识。 [] STRING
    success 请求是否成功,支持以下取值:

    • true:请求成功。
    • false:请求失败。
    [] BOOL
    error_code 请求失败时,返回的错误码。 [] INT
    error_msg 请求失败时,返回的错误信息。 [] STRING

    输出数据的示例如下。

    {
      "request_id": "d4e4348a-6101-43d1-9203-dbe8f531****", 
      "success": true, 
      "similarity": [1.0],
      "l2_distance":[0.0]
     }
  • 测试数据
    • 下载样本A
    • 下载样本B

图片上色模型

  • 模型介绍

    该模型采用NoGAN模型,能够返回上色后的彩色图片。

  • 输入格式
    输入数据为JSON格式字符串,包含image字段,对应的value为图片内容的Base 64编码。

    {
      "image": "图像文件内容的Base 64编码"
    }
  • 输出格式
    输出数据为JSON格式字符,包含的字段如下表所示。

    字段 描述 Shape Type
    out_image 待上色的图像 [] BASE 64
    request_id 请求的唯一标识 [] STRING
    success 请求是否成功 [] BOOL
    error_code 请求错误码 [] INT
    error_msg 请求错误信息 [] STRING

    输出数据的示例如下。

    {
       "out_image": "图像文件内容的Base 64编码"
       "request_id": "9ac294a4-f387-4c48-b640-d2c6d41f****",
       "success": true
    }

内容没看懂? 不太想学习?想快速解决? 有偿解决: 联系专家

阿里云企业补贴进行中: 马上申请

腾讯云限时活动1折起,即将结束: 马上收藏

同尘科技为腾讯云授权服务中心。

购买腾讯云产品享受折上折,更有现金返利:同意关联,立享优惠

转转请注明出处:https://www.yunxiaoer.com/160850.html

(0)
上一篇 2023年12月10日 上午2:51
下一篇 2023年12月10日
详情页2

相关推荐

  • 阿里云人工智能平台PAIRetinaNet优化案例1:使用Blade优化RetinaNet(Detectron2)模型-云淘科技

    RetinaNet是一种One-Stage RCNN类型的检测网络,基本结构由一个Backbone、多个子网及NMS后处理组成。许多训练框架中均实现了RetinaNet,典型的框架有Detectron2。本文以Detectron2的标准RetinaNet实现为例,介绍如何使用Blade优化RetinaNet(Detectron2)类型的模型。 使用限制 本文…

    2023年12月10日
  • 阿里云日志服务SLS无数据告警-云淘科技

    您可以使用无数据告警功能,用于避免采集过程中数据丢失无感知问题。 例如您创建了一个告警监控规则用于监控各个主机的CPU指标,并希望发生如下情况时,收到告警通知。 CPU使用率超过95%。 查询和分析结果中无数据。 具体配置如下所示: 查询统计:* | select promql_query_range(‘cpu_util’) from metrics lim…

    2023年12月10日
  • 阿里云ECS云服务器使用Megatron-Deepspeed训练GPT-2并生成文本-云淘科技

    本文介绍如何使用GPU云服务器,使用Megatron-Deepspeed框架训练GPT-2模型并生成文本。 背景信息 GPT-2模型是OpenAI于2018年在GPT模型的基础上发布的新的无监督NLP模型,当时被称为“史上最强通用NLP模型”。该模型可以生成连贯的文本段落,并且能在未经预训练的情况下,完成阅读理解、问答、机器翻译等多项不同的语言建模任务。GP…

    2023年12月9日
  • 阿里云人工智能平台PAI图像智能处理类模型-云淘科技

    在ModelHub中,PAI提供多种已经训练好的图像智能类模型供您使用,本文为您介绍每种模型的输入格式、输出格式及使用示例。 PAI提供以下训练好的成熟图像智能处理类模型,帮助您快速触达业务: 模型 功能 通用图像分类模型 识别常见物体的类别。 通用图像检测模型 识别常见物体的类别并返回位置信息。 图像语义分割模型 能够输出分割物体的类别和分割的Mask信息…

    阿里云人工智能平台PAI 2023年12月10日
  • 信息流广告,信息流部分建议宽度830px,只针对默认列表样式,顺序随机
  • 阿里云RDS数据库机器学习介绍-云淘科技

    RDS MySQL机器学习(RDS MySQL Machine Learning)是一种集成在RDS MySQL服务中的完全托管、简化机器学习流程的解决方案。通过简单的SQL命令即可实现基于目标数据的模型训练以及数据预测,支撑企业AI业务发展。 公测说明 RDS MySQL机器学习服务已开启公测,您可以通过阿里云账号(主账号)提交公测申请,审核通过后即可开启…

    2023年12月9日

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信
本站为广大会员提供阿里云、腾讯云、华为云、百度云等一线大厂的购买,续费优惠,保证底价,买贵退差。